Fasting and postprandial overproduction of intestinally derived lipoproteins in an animal model of insulin resistance. Evidence that chronic fructose feeding in the hamster is accompanied by enhanced intestinal de novo lipogenesis and ApoB48-containing lipoprotein overproduction.

نویسندگان

  • Mehran Haidari
  • Nathalie Leung
  • Farhana Mahbub
  • Kristine D Uffelman
  • Rita Kohen-Avramoglu
  • Gary F Lewis
  • Khosrow Adeli
چکیده

Insulin-resistant states are characterized by hypertriglyceridemia, predominantly because of overproduction of hepatic very low density lipoprotein particles. The additional contribution of intestinal lipoprotein overproduction to the dyslipidemia of insulin-resistant states has not been previously appreciated. Here, we have investigated intestinal lipoprotein production in a fructose-fed hamster model of insulin resistance previously documented to have whole body and hepatic insulin resistance, and hepatic very low density lipoprotein overproduction. Chronic fructose feeding for 3 weeks induced significant oversecretion of apolipoprotein B48 (apoB48)-containing lipoproteins in the fasting state and during steady state fat feeding, based on (a) in vivo Triton WR1339 studies of apoB48 production as well as (b) ex vivo pulse-chase labeling of intestinal enterocytes from fasted and fed hamsters. ApoB48 particle overproduction was accompanied by increased intracellular apoB48 stability, enhanced lipid synthesis, higher abundance of microsomal triglyceride transfer protein mass, and a significant shift toward the secretion of larger chylomicron-like particles. ApoB48 particle overproduction was not observed with short-term fructose feeding or in vitro incubation of enterocytes with fructose. Secretion of intestinal apoB48 and triglyceride was closely linked to intestinal enterocyte de novo lipogenesis, which was up-regulated in fructose-fed hamsters. Inhibition of fatty acid synthesis by cerulenin, a fatty acid synthase inhibitor, resulted in a dose-dependent decrease in intestinal apoB48 secretion. Overall, these findings further suggest that intestinal overproduction of apoB48 lipoproteins should also be considered as a major contributor to the fasting and postprandial dyslipidemia observed in response to chronic fructose feeding and development of an insulin-resistant state.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanisms of metabolic dyslipidemia in insulin resistant states: deregulation of hepatic and intestinal lipoprotein secretion.

The growing epidemic of the metabolic syndrome is now well recognized and there is widespread effort to understand the pathogenesis of this complex syndrome and its major metabolic consequences. One of the severe complications accompanying insulin resistant states is the hypertriglyceridemia that appears to occur largely due to overproduction of triglyceride-rich, apolipoprotein B (apoB) contai...

متن کامل

مکانیسم مولکولی دیس‌لیپیدمی متابولیک در وضعیتهای مقاومت به انسولین

Insulin resistant states are emerging rapidly and lots of efforts have gone into understanding their pathogenesis and major metabolic consequences. Hypertriglyceridemia, a major complication of this metabolic syndrome, seems to be caused by overproduction of lipoproteins (LPs) containing apo B that are rich in triglycerides. Some in vitro and in vivo models have been introduced so as to under...

متن کامل

Mechanisms of hepatic very low density lipoprotein overproduction in insulin resistance. Evidence for enhanced lipoprotein assembly, reduced intracellular ApoB degradation, and increased microsomal triglyceride transfer protein in a fructose-fed hamster model.

A novel animal model of insulin resistance, the fructose-fed Syrian golden hamster, was employed to investigate the mechanisms mediating the overproduction of very low density lipoprotein (VLDL) in the insulin resistant state. Fructose feeding for a 2-week period induced significant hypertriglyceridemia and hyperinsulinemia, and the development of whole body insulin resistance was documented us...

متن کامل

GLP-1 receptor agonism ameliorates hepatic VLDL overproduction and de novo lipogenesis in insulin resistance

BACKGROUND/OBJECTIVES Fasting dyslipidemia is commonly observed in insulin resistant states and mechanistically linked to hepatic overproduction of very low density lipoprotein (VLDL). Recently, the incretin hormone glucagon-like peptide-1 (GLP-1) has been implicated in ameliorating dyslipidemia associated with insulin resistance and reducing hepatic lipid stores. Given that hepatic VLDL produc...

متن کامل

Ezetimibe ameliorates intestinal chylomicron overproduction and improves glucose tolerance in a diet-induced hamster model of insulin resistance.

Ezetimibe is a cholesterol uptake inhibitor that targets the Niemann-Pick C1-like 1 cholesterol transporter. Ezetimibe treatment has been shown to cause significant decreases in plasma cholesterol levels in patients with hypercholesterolemia and familial hypercholesterolemia. A recent study in humans has shown that ezetimibe can decrease the release of atherogenic postprandial intestinal lipopr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 277 35  شماره 

صفحات  -

تاریخ انتشار 2002